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ABSTRACT
Cricketing knowledge tells us that batting is more difficult early in a player’s innings
but becomes easier as a player familiarizes themselves with the conditions. A com-
prehensive dataset of T20 matches is utilized to study the impact of different factors
on the survival of batsmen in the highly dynamic and fast-paced T20 format. Sur-
vival analysis, in the context of T20, models dismissal as an event. Each batsman’s
innings represents a ”lifetime” until dismissal occurs. This research compares the
effectiveness of Non-Parametric, Semiparametric, and Parametric survival analysis
methods using T20 data. This analysis utilizes several survival models, including the
Kaplan-Meier method for estimating survival rates, the Log-rank test for compar-
ing survival differences between groups, and the Cox Proportional Hazards model
for calculating hazard ratios. Additionally, AIC and BIC values were employed to
identify the most appropriate survival distribution for each player, which was then
applied into a parametric regression model to generate time ratios for each group.
Furthermore, Conditional Survival Probabilities can be beneficial for team man-
agement in determining or adjusting the batting order during a match based on
the current game situation and the opposing team. World’s top eight T20 run scorer
Batsmen up to May 31st, 2024, was taken from www.espncricinfo.com for this study.
For this analysis carried out from the R Programming Language and its packages
like ”survival” and ”surviminer” were used.

KEYWORDS
Survival Analysis; Non-Parametric; Semiparametric; Parametric models;
Conditional Survival Probability

1. Introduction

One of the most well-liked sports in the world now is cricket. Now-a-days, this game
is played throughout countries, states, and even cities. There are three different ways
to play cricket: Twenty20 (T20), One Day International (ODI), and Test Cricket.
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One-day cricket was introduced in the 1960s as an alternative to the Test Cricket
characterized by more aggressive batting, colorful uniforms and fewer matches ending
in draws. ODI cricket is limited to fifty overs. The biggest event in ODI cricket takes
place after every four years when the World Cup of Cricket (WCC) is organized by
the International Cricket Council (ICC) which is the global governing body for cricket
games. Later in 2003, T20 form of the cricket game was introduced with focus on
gaining wider audience and with emphasis on power hitting. Cricket in T20 format
is limited to twenty overs. The present research is related to the game of T20’s. The
topic of this study is the T20 league. Batting is the heart of cricket and bowling is
its backbone. According to cricket understanding, batting is more difficult early in
a player's innings but improves as players become more comfortable with the pitch
conditions.

Survival analysis is a collection of methods for analysing data in which the outcome
variable is the time until the occurrence of a specified event. It differs from other fields
of Statistics mainly because of the incomplete information that arise due to censoring.
A batsman's innings might be thought of as a lifespan (Kachoyan & West, 2016). The
authors defined it as ”when the batsman goes out to bat, he is 'born' and 'lives' for
a certain number of balls before he is dismissed”. A dismissal was referred to as a
batsman ‘death’ which is the event of interest. When a batsman was not dismissed
during a match that particular observation was referred to as a censored observation.
The majority of earlier research that examined individual batsmen's survival ability,
i.e. (Kimber & Hansford, 1993; Kachoyan & West, 2016; Brown, 2017; Saikia & Bhat-
tacharjee, 2018), was conducted using the survival function of the number of balls
faced till dismissal.

The Kaplan-Meier (1958) method for estimating the survival function, Log-rank
statistics, Mantal (1966) for comparing two survival distributions, and the Cox (1972)
Proportional Hazards model for quantifying the effects of covariates on survival time
are the most significant developments in this field. Cox regression can be employed
to determine the variables that significantly influence the outcome of interest, with
results expressed as hazard ratios. Ramakrishnan and Ravanan (2013) implemented
Non-Parametric approaches and tests across a variety of areas, including sociology and
medicine. Mohan et al. (2022) used Survival Methods to study the impact of Covid-19
on NSE sectoral indices. Brief summary of Semiparametric models used in survival
analysis by ShaojunGuo and Donglin Zeng (2013). NanamiTaketomi et al., (2022)
reviewed important Survival Parametric distribution models. The implementation of
Parametric survival models was demonstrated by Mukesh Kumar et al., (2019) through
the utilization of R software, which is freely accessible.

Kimber and Hansford (1993) demonstrated utility of Non-Parametric models for
estimating hazard of player’s. Bracewell and Ruggiero (2009) suggested ‘Ducks n
runs’distribution for scores of zero to overcome inability of geometric distribution
under inflated number of scores of zero. A survival rate criterion is considered by van
Staden (2010) for evaluating the performance of batsmen. Saikai and Bhattacharjee
(2018) examined survival ability of batsmen in IPL 2012. A detail study regarding
research directions in cricket was considered by Swartz (2017). Sachin S.S. Kottear-
achchi et al. (2022) assessing the survival abilities of the opening batting performance
is crucial for addressing Sri Lankan cricket's current decline. Preetham HK and Ku-
mar (2023) proposed a method to predict IPL match outcomes and inning scores.
To achieve this, they suggested using various machine learning techniques on specific
datasets. Shah et al. (2023) investigated the survival probabilities of the world's top ten
batsmen, and their findings can be utilised as a new criterion for evaluating batsmen
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because they indicate a batsman's capability to survive on the crease.
In this paper, we have taken past record of World Top eight highest run scorers

in T20 Matches. This analysis utilizes several survival models, including the Kaplan-
Meier method for estimating survival rates, the Log-rank test for comparing survival
differences between groups, and the Cox Proportional Hazards model for calculat-
ing hazard ratios. Additionally, AIC and BIC values were employed to identify the
most appropriate survival distribution for each player, which was then applied into a
Parametric regression model to generate time ratios for each group. Furthermore, Con-
ditional Survival Probabilities can be beneficial for team management in determining
or adjusting the batting order during a match based on the current game situation
and the opposing team.

The study begins with a concise introduction and a comprehensive literature re-
view. Section 2 provides an overview of Non-Parametric, Semiparametric, and Para-
metric estimation methods for analyzing time-to-event data, with a focus on classical
approaches. Section 3 outlines performance measures using the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). These survival analysis
techniques are subsequently applied to real-world data, specifically the T20 dataset,
with the results presented in Section 4. Finally, Section 5 concludes with a summary
of the findings.

2. SURVIVAL FUNCTIONS AND METHODS

The survival function is of atmost priority in the field of survival analysis is defined
as the probability of survival beyond time t.

S(t) = P (T > t) = 1− F (t)

Where T is a random variable denotes the time that the event occurs. The survival
function is the complement of the Cumulative Density Function (CDF),

F (t) =

∫ t

0
f(u)du

Where f(t) is the probability density function. The hazard function h(t) gives the
instantaneous potential per unit timefor the event to occur, given that the individual
has survived up totime t.

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t

The hazard function or the instantaneous rate at which an event occurs at time t
given survival until time t is given by,

h(t) =
f(t)

S(t)

The survival function can also be stated in terms of the cumulative hazard function,
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H(t) =

∫ t

0
h(u)du

S(t) = e−H(t)

The hazard function and the survival function have a straightforward one-to-one
connection. The cumulative hazard function is denoted by H(t).

2.1. Non-Parametric Method

Non-Parametric methods in survival analysis play a crucial role in understanding time-
to-event data without making strong assumptions about the underlying distribution
of the data. The Kaplan-Meier method is the most popular method used for survival
analysis. It provides us an opportunity to estimate survival probabilities and compare
survival between two or more groups at a given specific time.

The Kaplan-Meier (KM) method

Survival Probabilities were estimated through product of conditional probabilities
without assuming distributional form for survival time. In this model, Survival Func-
tions S(t) = P (T > t) is estimated through.

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)

where di and ni respectively are the number of events that occur and the number of
subjects that enters the study at time ti, which is the ith ordered survival time. Log-
rank test is used to compare the survival patterns across ‘Batting First’ and ‘Chasing’.

2.2. Semiparametric Method

A semiparametric model, such as the Cox Proportional Hazards (PH) model, is com-
monly used in survival analysis to assess the relationship between covariates and the
hazard of an event occurring over time.

Cox Proportional Hazard

Cox (1972) proposed the following regression model for the hazard function

h (t|X,β) = h0(t)e
∑p

1 βiXi

The survival time is denoted by t, and the hazard function, represented as h (t|X,β),
is influenced by a set of p covariates, which are denoted as (X1, X2, . . . , Xp). The coeffi-
cients β= (β1, β2, . . . , βp) quantify the effect of these covariates on the hazard function.
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Additionally, the term h0(t) signifies the baseline hazard, serving as a reference point
for understanding how the covariates modify the risk of the event occurring over time.
Together, these components form a comprehensive framework for analyzing survival
data and assessing the relationships between covariates and the hazard of events.

Proportional Hazard Assumptions

The proportional hazards assumption requires that covariates are multiplicatively re-
lated to the hazard. To verify Proportional Hazard assumption, test based on Schoen-
feld Residuals is used.

2.3. Parametric Methods

Parametric models can be used if the survival time follows to specific distributions.
In the Accelerated Failure Time model, the survival proportion of one group at any
time t is equivalent to the survival proportion of the second group at time ϕ ∗ t,
with ϕ being a constant. This investigation explores the application of various well-
established distribution models, such as the Exponential, Weibull, Lognormal, and
Log-logistic distribution. This paper specifically utilizes the Accelerated Failure Time
model to analyze the survival patterns of batsmen.

3. PERFORMANCE MEASURES

Performance between the models is compared using Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), a measure of the goodness of fit
for statistical models. The AIC and BIC are given by

AIC = −2 ∗ (loglikelihood) + 2(k + c)

BIC = −2 ∗ (loglikelihood) + (k + c) log (n)

, Where k denotes the number of covariates in the model, not including the constant
terms, n is the sample size and c is the number of model specific distributional param-
eters. Smaller AIC and BIC values of the models indicates better model fit.

4. APPLICATION TO T20 CRICKET DATA

A reliable data source for this research was found in Statsguru. Statsguru is ESPN
Cricinfo’s cricket statistics maintenance database (www.espncricinfo.com). The details
of the performance of T20 2024 World’s ICC Top eight high scoring batsmen up to
May 31st, 2024 are considered in this study. This data T20 considered the high run
scorer Batsmen Virat Kohli, Babar Azam, Rohit Sharma, Paul Stirling, Mohammad
Rizwan, David Warner, Jos Buttler and Kane Williamson.

This study investigates the effectiveness of various statistical methods (Non-
Parametric, Semiparametric, and Parametric methods) for analyzing batsmen survival
times, defined as the number of runs scored. Event of interest of this study is ‘getting
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out’ in an innings and considering ‘not out’ as censored. The author aims to assess the
probabilities and factors influencing of dismissal in cricket. Virat Kohli, Babar Azam,
Rohit Sharma, Paul Stirling, Mohammad Rizwan, David Warner, Jos Buttler and
Kane Williamson played 109, 112, 151, 141, 85, 103, 107 and 87 matches respectively.

Kaplan-Meier’s method of estimating Survival function is a Non-Parametric analy-
sis. This method considers only time and event.

Table 1. Descriptive statistics of the selected batsmen

Player Names Number of Matches Min.Runs Q1 Median Mean Q3 Max.Runs

Virat Kohli 109 0 13.00 29.00 37.04 59 122
Babar Azam 112 0 9.75 31.50 35.92 55 122
Rohit Sharma 143 0 5.50 15.00 27.79 45 121
Paul Stirling 141 0 7.00 19.00 25.45 35 115
Mohammad Rizwan 85 0 11.00 32.00 37.68 67 104
David Warner 103 0 6.50 23.00 30.09 53 100
Jos Buttler 107 0 8.00 22.00 28.50 40 101
Kane Williamson 87 0 10.50 25.00 29.28 42 95

From the above table.1, it can be seen that Rohit Sharma has played the maximum
number of matches with 143, while Virat Kohli and Babar Azam have scored the
highest maximum runs of 122 each. Average runs scored indicate overall performance.
Kohli leads with a mean of 37.04, closely followed by Rizwan (37.68), demonstrating
their consistent scoring ability across matches. Paul Stirling has the lowest average at
25.45.

Table 2. Kaplan-Meier and Survival Probabilities for top 8 batsmen

Runs Virat Kohli Babar Azam Rohit Sharma Paul Stirling Mohammad Rizwan David Warner Jos Buttler Kane Williamson

n=109 n=112 n=143 n=141 n=85 n=103 n=107 n=87
10 0.8065 0.7411 0.6500 0.6950 0.7831 0.6873 0.7330 0.7584
30 0.5319 0.5245 0.3619 0.3373 0.5384 0.3829 0.4153 0.4453
50 0.3761 0.3375 0.2559 0.1810 0.3625 0.2743 0.2791 0.2547
70 0.2467 0.1631 0.1268 0.1080 0.2460 0.1379 0.1289 0.0772
100 0.1583 0.0669 0.0498 0.0144 0.1298 0.0460 0.0552 0.0000

n-Number of Matches Played

This table 2 shows the Kaplan-Meier survival probabilities for the top 8 batsmen
based on the number of runs scored in T20 cricket matches. The numbers in the
table represent the probability of a player surviving (not getting out) after scoring
a certain number of runs in a match. Kohli has 80.65% chance of remaining not
out after scoring 10 runs, after scoring 30 runs is 53.19% chance, and so on. Babar,
Rizwan, Warner, Buttler and Williamson also show relatively high probabilities of
remaining not out after scoring 50 runs (0.3375, 0.3625, 0.2743, 0.2791 and 0.2547,
respectively). Kohli demonstrating the highest survival probabilities among all other
top batsmen. This also suggests that Kohli Converts a good start into half century and
century, which is confirmed by the number of centuries he has scored. Williamson and
Stirling have a lower probability of survival compare to others Players. The table also
includes the number of matches played (n) for each player, which ranges from 85 to
143 matches. The survival probabilities provide insights into the batting performance
and consistency of these players in different run-scoring scenarios.

Figure 1 shows that all players except Kane Williamson hit more than 100 runs.
Rohit and Williamson suggest that batsmen have a higher probability of getting out
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Figure 1. Survival Curves of Top Eight Batsmen

as they score more runs. Overall Kohli, Babar and Rizwan have a high survival proba-
bility of getting good runs exhibit the highest survival probabilities, indicating better
performance and consistency in scoring runs compared to the other batsmen.

Similarly, survival probabilities of each batsman according to their innings and p-
value for corresponding Log-rank statistic are given in the following Table 3.

Table 3. Survival Probabilities of T20 top 8 batsmen Corresponding to Innings

Players Runs 10 30 50 70 100 p-value

Kohli Batting First (63, 32.14) 0.6984 0.4105 0.2773 0.1977 0.1648 0.0136*
Chasing (46,43.74) 0.9556 0.7044 0.5187 0.3175 -

Babar Batting First (59,37.47) 0.7797 0.5593 0.3153 0.1356 0.0678 0.8264
Chasing (53,34.19) 0.6981 0.4861 0.3646 0.1975 0.0705

Rohit Batting First (77,32.58) 0.7089 0.4226 0.3099 0.1713 0.0623 0.0499*
Chasing (66,22.19) 0.5813 0.2906 0.1913 0.0773 0.0386

Stirling Batting First (54,26.80) 0.7222 0.3519 0.1852 0.0926 0.0185 0.9784
Chasing (87, 24.62) 0.6782 0.3280 0.1795 0.1212 -

Rizwan Batting First (41,43.24) 0.8537 0.5610 0.4088 0.2811 0.2024 0.1938
Chasing (44,32.5) 0.7123 0.5158 0.3174 0.2116 -

Warner Batting First (40,29.95) 0.6500 0.3250 0.2250 0.1250 0.0500 0.7309
Chasing (63,30.17) 0.7111 0.4202 0.3062 0.1472 -

Buttler Batting First (50,31.68) 0.7400 0.5152 0.3252 0.0965 0.0322 0.5598
Chasing (57,25.72) 0.7268 0.3203 0.2349 0.1495 -

Williamson Batting First (49,28.33) 0.7959 0.4209 0.1994 0.0443 - 0.1043
Chasing (38,30.50) 0.7096 0.4815 0.3377 0.1313 -

(a,b): where a denotes number of matches played and b denotes average runs

Table 3 presents the survival probabilities of the top 8 T20 run scorer, consider-
ing their performance in different innings scenarios: Batting first and Chasing. The
survival probabilities are provided at different run milestones (10, 30, 50, 70, 100) for
each player. The Players Kohli, Rohit, Stirling, Buttler and Rizwan have high prob-
abilities of survival when chasing compared to Facing. But Babar and Williamson
started taking runs in Facing innings compared to Chasing. We expect centuries from
Kohli, Stirling, Rizwan, Warner and Buttler when they are playing Facing innings
but Rohit and Babar have high chances for getting centuries in both innings. From
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Non-Parametric Log-rank test, the p-value column indicates the statistical significance
of the survival probabilities. From Non-Parametric Log-rank test, it is observed that
there is a significant difference in getting runs in Facing and Chasing innings for Kohli
and Rohit at 5% level of significance. Hence it is concluded that there is a significant
difference between scoring pattern of two innings. But there is no significant difference
observed from all other batsmen.

Figure 2. Survival Curves of Batsmen Corresponding to Innings

Figure 2 graphically represents the survival curves for every innings of batsmen.
This diagram also confirms that there is a significant difference in getting runs in
Facing and Chasing innings for Kohli and Rohit at 5% level of significance. But there
is no significant difference observed from all other batsmen.

The following Table 4, shows Chi-Square statistic and p-Values of Log-rank test for
the comparison survival distribution among the players.

Table 4. Chi-Square and p-Value for All Players

Batsmen Kohli Babar Rohit Stirling Rizwan Warner Buttler Williamson

Virat Kohli 2.32/0.13 11.08/<0.001** 18.6/<0.001** 0.11/0.74 7.48/0.01* 5.36/0.02* 7.73/0.01*
Babar Azam 3.59/0.06* 9.24/<0.001** 1.24/0.27 1.71/0.19 1.08/0.3 2.52/0.11
Rohit Sharma 1/0.32 7.21/0.01* 0.2/0.66 0.84/0.36 0.1/0.75
Paul Stirling 13.4/<0.001** 1.84/0.17 3.18/0.07 1.8/0.18

Mohammad Rizwan 4.89/0.03* 3.65/0.06 5.48/ 0.02*
David Warner 0.13/0.71 0.03/0.86
Jos Buttler 0.14/0.71

Kane Williamson

a/b: a denotes chi-square statistic, b denotes its corresponding p-value; *denotes 5% level
of significance; **denotes 1% level of significance

Table 4. confirms that Kohli has a significant difference in the survival pattern of
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scoring runs among all players at the 5% level of significance. Furthermore, exclud-
ing Babar and Rizwan, there is a significant difference between Kohli's and the other
players' survival distributions at the 5% level. Babar and Stirling also exhibit a sig-
nificant difference in their survival patterns at 1% level. The difference increases for
Rohit and Rizwan, as well as Stirling and Rizwan, with a significant difference in their
survival distributions at the 1% level. Rizwan's survival pattern differs significantly
from those of Warner, Buttler, and Williamson at the 1% significance level. This in-
formation can be valuable for team selection, strategy formulation, and understanding
player dynamics in cricket.

Table 5. Chi-Square and p-Value for All batsmen Corresponding to Innings

Innings Babar Rohit Paul Rizwan Warner Buttler Williamson

Virat Kohli I 0.05/0.83 0.31/0.57 3.6/0.06 1.8/0.18 1.32/0.25 0.09/0.76 2.43/0.12
II 5.8/0.02* 20.97/<0.001** 20.04/<0.001** 4.31/0.04* 10.74/<0.001** 11.39/<0.001** 5.07/0.02*

Babar Azam I 0.44/0.51 5.35/0.02* 1.97/0.16 1.55/0.21 0.53/0.47 5/0.03*
II 3.9/0.05* 3.4/0.07 0/0.96 0.44/0.51 0.54/0.46 0/0.99

Rohit Sharma I 2.53/0.11 3.88/0.05* 0.47/0.49 0/0.96 2.01/0.16
II 0.18/0.67 4.15/0.04* 2.73/0.1 1.7/0.19 3.94/0.05*

Paul Stirling I 10.53/<0.001** 0.39/0.53 2.06/0.15 0.06/0.81
II 3.25/0.07 1.18/0.28 0.69/0.41 3.15/0.08

Mohammad Rizwan I 5.35/0.02* 3.58/0.06 0.75/<0.001**
II 0.61/0.44 0.84/0.36 0.02/0.88

David Warner I 0.36/0.55 0.35/0.55
II 0.03/0.86 0.43/0.51

Jos Buttler I 2.21/0.14
II 0.83/0.36

*denotes 5% level of significance; **denotes 1% level of significance

From Table 5. It is observed that Kohli survival distribution for Chasing is signifi-
cantly differ from all other Players in this data but Babar Azam only differ from Stirling
and Williamson in Facing. Similarly, Riswan differ with Stirling and Williamson while
Facing.

These results can be used by team management to understand the performance
patterns of these batsmen and make informed decisions about their batting order and
strategy, especially in the second innings of the match. Survival probabilities of all bats-
men against six selected countries were studied. A batsman country combination was
considered for survival probability estimation if the batsman had played at least ten
matches against that specific country. These estimates were derived using the Kaplan-
Meier model. The survival probabilities of the all-top run scorer batsmen against the
six teams. The Log-rank test used for comparing survival differences between groups.

The table 6. Provides survival probabilities of all Batsmen against six different teams
(India, Australia, England, New Zealand, Pakistan and Ireland) at different run levels
(10, 30, 50, 70, 100).

We can see that Virat has Survival Chances more at initial and after that are highest
against Australia and least against New Zealand. Babar Azam had played against more
than ten Matches England and New Zealand, it is observed that After he stands initial
stage then we expect him to hit half century and century against both countries. Also,
Babar have high probabilities of survival against England compared to New Zealand.
Rohit has highest survival chance against England but least chance for getting century
against Pakistan. He has no chance for getting century against New Zealand, but
he has high probability to stand up to 50 runs against New Zealand comparing to
others. Rohit has a lower chance of reaching 50 against Pakistan compared to other
teams. Rizwan initially exhibits the highest survival chances against New Zealand. He
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Table 6. Survival Probabilities of all Players against 6 Teams

Players Runs India Australia England New Zealand Pakistan Ireland

NOM 21 20 10 10 2
10 0.8100 0.7500 0.9000 0.0949
30 0.5130 0.4880 0.5000 0.1265

Virat Kohli 50 0.3590 0.2170 0.2500 0.1610
70 0.2870 0.1630 0.1666
100 0.1440

NOM 4 8 17 24 3
10 0.8240 0.7917
30 0.6370 0.5000

Babar Azam 50 0.3190 0.3750
70 0.1910 0.1406
100 0.1270 0.0938

NOM 19 14 17 10 3
10 0.5789 0.7860 0.5647 0.4800
30 0.2895 0.3570 0.5020 0.1200

Rohit Sharma 50 0.2316 0.2140 0.3137
70 0.0772 0.1070 0.0627
100 0.1070

NOM 6 2 2 4 3
10
30

Paul Stirling 50
70
100

NOM 4 5 14 20 3
10 0.7140 0.7500
30 0.5000 0.4500

Mohammad Rizwan 50 0.4290 0.2400
70 0.2140 0.1800
100

NOM 9 14 10 16 2
10 0.4286 0.7000 0.6730
30 0.2857 0.3000 0.4040

David Warner 50 0.2143 0.2000 0.1790
70 0.0714
100

NOM 18 15 12 11 1
10 0.6670 0.8000 0.8330 0.6364
30 0.3750 0.4670 0.6250 0.3636

Jos Buttler 50 0.3000 0.3330 0.3470 0.1818
70 0.1500 0.1780 0.1740 0.0909
100

NOM 13 11 8 21 1
10 0.8462 0.4545 0.8095
30 0.3846 0.1818 0.5565

Kane Williamson 50 0.2885 0.1818 0.3036
70 0.0962 0.0909 0.0632
100

NOM – Number of Matches Played

has nearly a 75% chance of remaining not out after scoring 10 runs and a 45.50%
chance after reaching 30 and so on. Also, survival probabilities are higher against
England compared to New Zealand. David Warner exhibits the highest initial survival
chances against New Zealand, but unable to convert into big scores. Compared to other
teams like England and Pakistan, Warner has a higher chance of reaching 50 against
England, while his probability of achieving scores against Pakistan is lower. Jos Buttler
is most comfortable in the initial stages of an innings against New Zealand compared to
another opponent’s team. He has an 83% chance of remaining not out after scoring 10
runs against New Zealand. Additionally, Buttler has the highest survival rates against
Australia and India. When compared to other teams, his chances of reaching 50 runs
are higher against New Zealand, but his probability of scoring a half-century against

128



Asian European Journal of Probability and Statistics Ramakrishnan et al.

Pakistan is lower than against other teams. Kane Williamson initially demonstrate
the highest survival chances against India and lowest against Australia.

Figure 3. Survival Curves of each batsman against different Countries

From Figure 3, It is observed that Kohli initial survival probability is higher against
all teams except Pakistan. His survival pattern is relatively consistent against all coun-
tries. Also, his survival chances at initial score and after that are highest against Aus-
tralia and least against New Zealand. Babar has high probabilities of survival when
England compared to New Zealand. Rohit has highest survival chance against England
but least chance for getting century against Pakistan. Rizwan's survival probabilities
are higher against England compared to New Zealand.

From table 7, This Conditional Survival Probability indicates that a specific bats-
man's chances of reaching ‘b’ runs while currently at ‘a’ runs reflect their performance
ability in the ongoing match. We can see that when Kohli scores 10 runs, his proba-
bility of reaching a century is the highest among all players. This indicates that once
Kohli finds his pattern, his chances of converting it into a big score are greatest. The
chances of a batsman reaching a century after scoring 50 runs are high for Kohli,
with Rizwan, Buttler, and Babar closely following him. Additionally, the probability
of scoring 50 runs is high for Rohit. For hitting Century, Stirling has lower chances,
while Williamson has no chance at all. This is also evident in the number of centuries
these batsmen have achieved. Once they settle in at the crease, their scoring tends
to be high. Low probabilities for a batsman indicate that they often lose their wicket
after getting into a rhythm. This insight can help coaches encourage players to fo-
cus on longer innings. These probabilities will be particularly valuable for predicting
individual and team scores, which is crucial for both the team and the betting industry.

Batsmen considered in this study are mostly top order batsmen. Semiparametric
Cox-PH and Parametric models were used to study the survival pattern present with
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Table 7. Conditional Probabilities P(Runs > b | Runs >

a) of Batsmen

Players a
b 10 30 50 70

10 1
30 0.6596 1.0000

Kohli 50 0.4663 0.7070 1.0000
70 0.3059 0.4638 0.4638 1.0000
100 0.1963 0.2976 0.4209 0.6417
10 1.0000
30 0.7077 1.0000

Babar 50 0.4554 0.6435 1.0000
70 0.2201 0.3110 0.4832 1.0000
100 0.0903 0.1276 0.1982 0.4103
10 1.0000
30 0.5568 1.0000

Rohit 50 0.3938 0.7071 1.0000
70 0.1951 0.3504 0.4956 1.0000
100 0.0767 0.1377 0.1947 0.3929
10 1.0000
30 0.4854 1.0000

Stirling 50 0.2605 0.5366 1.0000
70 0.1554 0.3203 0.5968 1.0000
100 0.0207 0.0427 0.0796 0.1333
10 1.0000
30 0.6875 1.0000

Riswan 50 0.4629 0.6733 1.0000
70 0.3141 0.4569 0.6786 1.0000
100 0.1658 0.2412 0.3582 0.5278
10 1.0000
30 0.5571 1.0000

Warner 50 0.3990 0.7162 1.0000
70 0.2006 0.5028 0.5028 1.0000
100 0.0669 0.1676 0.1676 0.3333
10 1.0000
30 0.5666 1.0000

Buttler 50 0.3808 0.6720 1.0000
70 0.1758 0.3103 0.4618 1.0000
100 0.0754 0.1330 0.1979 0.4286
10 1.0000
30 0.5871 1.0000

Williamson 50 0.3359 0.5721 1.0000
70 0.1018 0.1734 0.3030 1.0000
100 0.0000 0.0000 0.0000 0.0000

respect to “innings” (Batting First or Chasing) and their Positions (Top, Middle and
Low order). Comparing all the batsmen simultaneously may not be justified due to
high degree of heterogeneity present in the batting style and each batsman played in
“top order” and “middle order” were compared. Batsmen who typically bat in the
first three positions (1, 2, and 3) are designated as ”top order” and bat in positions
four through seven are classified as ”middle order”.

The hazard ratios between innings and positions were analyzed using the Cox Pro-
portional Hazards model, with its assumptions evaluated through graphical methods
and tests. While using Cox Proportional Hazard model for all batsmen score data with
their positions, the following observations were made. The following Table 8 includes
Hazard Ratio, Chi-square statistics and p-value for accessing Proportional Hazard
(PH) assumptions for the variable Innings and Positions.

From the table 8, Kohli’s batting corresponding to innings play a significant role
in scoring runs at a 5% level of significance. The hazard ratio for Kohli's innings is
0.57, indicating that the risk of getting out while Chasing is 43% lower compared to
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Table 8. Hazard Ratio and Chi-square Statistic for PH Assumption and its corresponding

p-values for Covariates Innings and Position of each Batsman

Players Variable CoxPH PH assumption
HR p-Value Chi-square p-Value

Innings 0.5675 0.0171* 6.6390 0.0100
Virat Kohli (89,20,0) Middle 1.2341 0.4809 0.0290 0.8650

Bottom
Innings 1.0515 0.8070 1.8300 0.1760

Babar Azam(110,2,0) Middle 1.1609 0.8370 4.3500 0.0370
Bottom
Innings 1.4470 0.0425* 0.2140 0.6440

Rohit Sharma (119,24,0) Middle 1.3456 0.2866 3.6740 0.0550
Bottom
Innings 0.9918 0.9640 0.0360 0.8500

Paul Stirling (141,0,0) Middle
Bottom
Innings 1.3648 0.2138 0.0896 0.7650

Mohammad Rizwan (73,10,2) Middle 2.3519 0.0425* 8.6003 0.0140
Bottom 7.2795 0.0691
Innings 0.9334 0.7510 0.0746 0.7800

David Warner (99,4,0) Middle 0.9612 0.9400 0.1293 0.7200
Bottom
Innings 1.2921 0.2482 0.6190 0.4300

Jos Buttler (52,55,0) Middle 2.2007 0.0008* 0.2330 0.6300
Bottom
Innings 0.6582 0.0875 3.3000 0.0690

Kane Williamson (73,13,1) Middle 1.6518 0.1364 2.7200 0.2570
Bottom 11.7647 0.0220*

(a,b,c): a,b and c denotes number of Matches Played as Opener, Middle Order
and Low order respectively. *denotes 5%level of significance; **denotes 1% level of
significance

Facing. This suggests that Kohli is likely to spend more time at the crease in the
second innings than in the first. Similarly, for Rohit, it is found that innings also play
a significant role in scoring runs at a 5% level of significance. However, the hazard
ratio for Rohit’s innings is 1.45; showing that the risk of getting out while Chasing is
1.45 times higher compared to facing other teams. For Mohammad Rizwan and Jos
Buttler changing his position of batting order affects getting Runs. Their position of
batting order increases then their chance for out also increases at 2.6 times and 2.2
times respectively.

Figure 4 shows, the PH assumption of the Models is verified graphically and using
Schoenfeld residual test for Kohli.

Table 9. Hazard ratio between Players Scoring their runs

Players Coefficient HR p-Value

Babar Azam 0.2339 1.2635 0.1235
Rohit Sharma 0.4941 1.6390 0.0006**
Paul Stirling 0.6294 1.8765 <0.0001**
Mohammad Rizwan 0.0549 1.0564 0.7434
David Warner 0.4275 1.5334 0.0055**
Jos Buttler 0.3746 1.4543 0.0168*
Kane Williamson 0.4394 1.5517 0.0066**

The hazard ratio in the table 9 represents the exponentiated coefficient, it denotes
the increase or decrease in risk of an event given a unit change in time (in this case time
is measures as progress in terms of runs scored) relative to the baseline, which is Kohil’s
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Figure 4. Graph for PH Assumption of Virat Kohli

innings. The hazard ratio for Rohit, Stirling, Williamson and Warner is significantly
higher at 1.63, 1.87, 1.55 and 1.53 respectively, indicating a greater chance of getting
out compared to Kohli at a 1% level of significance. Buttler also has a significant risk
of getting out compared to Kohli at a 5% level of significance. In contrast, Babar and
Rizwan are less likely to get out before scoring the next run compared to Kohli, with
their results being statistically insignificant.

Four Parametric survival models were applied to the data, and their fit was assessed
using graphical techniques and performance metrics such as AIC and BIC. The appro-
priate models for evaluating the time ratios for innings and positions were identified.
Using corresponding distribution selected from performance measures, we obtained
Time Ratio for Innings. In order to address the singularities at the score zero, a small
positive value 0.001 is replace against Zero and this does not alter the estimates of
model parameters considerably.

The table 10, provided shows the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) values for fitting four different distributions (Exponential,
Weibull, Lognormal, Loglogistic) on the runs scored by World’s top eight highest run
scorer. Weibull is the best fit for runs scored by all Players except Kane Williamson.
But Exponential distribution is the best fit for Kane Willamson. These are observed
using AIC and BIC measures. By utilizing the appropriate distributions chosen from
performance measures, we calculated the Time Ratio for the innings variable. The
above table also indicates the significant difference of scoring pattern of Kohli and
Rohit between Facing and Chasing innings. The same observations made through
Non-Parametric and Semiparametric methods also.
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Table 10. Fitting Four distributions on runs scored by Top Eight batsmen of World

Players Measure Exponential Weibull Lognormal Loglogistic

AIC 769.5125 755.1848 796.5756 769.6730
BIC 774.8952 763.2588 804.6497 777.7471

Virat Kohli Time Ratio 1.77 2.20 6.84 3.00
p-Value 0.02* 0.02* <0.001** <0.01**
AIC 927.9619 917.2094 989.7701 948.1618
BIC 933.3989 925.3649 997.9255 956.3173

Babar Azam Time Ratio 0.93 0.89 0.69 0.74
p-Value 0.71 0.68 0.48 0.39
AIC 1128.4919 1080.6595 1165.3457 1123.8865
BIC 1134.4176 1089.5481 1174.2342 1132.7750

Rohit Sharma Time Ratio 0.69 0.68 0.62 0.63
p-Value 0.04* 0.19 0.38 0.22
AIC 1133.3329 1089.5447 1181.1998 1139.6658
BIC 1139.2305 1098.3909 1190.0461 1148.5121

Paul Stirling Time Ratio 1.01 1.07 1.12 1.03
p-Value 0.97 0.81 0.84 0.93
AIC 646.5853 636.8753 679.6942 651.9681
BIC 651.4706 644.2032 687.0221 659.2961

Mohammad Rizwan Time Ratio 0.71 0.67 0.63 0.65
p-Value 0.17 0.25 0.47 0.32
AIC 834.8672 817.6628 878.7353 845.1923
BIC 840.1367 825.5669 886.6395 853.0965

David Warner Time Ratio 1.12 1.20 1.64 1.25
p-Value 0.60 0.56 0.39 0.57
AIC 789.4608 777.1025 837.5210 800.3496
BIC 794.8064 785.1210 845.5395 808.3681

Jos Buttler Time Ratio 0.88 0.89 0.72 0.84
p-Value 0.57 0.71 0.57 0.64
AIC 688.1395 689.2994 761.2072 717.9918
BIC 693.0714 696.6971 768.6049 725.3895

Kane Williamson Time Ratio 1.35 1.38 1.38 1.22
p-Value 0.20 0.22 0.56 0.55

5. SUMMARY

Different survival techniques are used to predict the performance of top highest scorer
in T20 matches. These survival estimates help to evaluate the batsman while stand-
ing on the crease against particular countries and considering his every runs. The
performance of each batsman is evaluated based on their scoring runs at the crease,
their ability to manage different positions, their effectiveness in either facing or chas-
ing innings, and their run-scoring capabilities against different countries. These met-
rics assist decision-makers in determining the appropriate batting order for a player
against specific opponents. In this study we observed that Kohli has higher survival
rate compared to other top scorer, especially he differs from others scoring pattern
while playing in Chasing. Application of survival methods outlined in this article can
contribute to a better understanding of the risks and advantages of intervention in
various circumstances.

FUTURE STUDY

The competing risk analysis can be used for the same study, while considering different
terminal events of getting out of any player by Bowled, LBW, Runout, caught etc.,
and Recurrent event analysis also can apply for this study.
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